

Technical Interpretation

Standard: [BPI-2400-S-2015 v.2 Standard Practice for Standardized Qualification of Whole-House Energy Savings Predictions by Calibration to Energy Use History](#)

Edition: 2015 v.2

Paragraph/Figure/Table: Proposed Future Annex

Subject: On-Site Energy Generation

Issued: December 1, 2025

Record Number: 2025-02

Disclaimer

This Technical Interpretation represents the consensus response of the responsible committee and is issued in accordance with the organization's approved procedures for interpretations. This Interpretation is intended solely to clarify the meaning or intent of the referenced provisions of the standard as written.

This Interpretation does not constitute a revision, amendment, or modification to the standard and shall not be construed as permitting or requiring any design, installation, manufacturing, or operational practice not otherwise permitted by the standard.

This Interpretation is not a substitute for professional judgment and shall not be considered as providing engineering, design, legal, or other professional services.

DM-STC technical interpretation regarding on-site energy generation (part of proposed future annex for BPI-2400)

When a building uses on-site energy generation such that the billed electricity usage records provided by the utility do not represent the full electricity consumption of all the home's end uses, the calibration shall not be based on the utility bill records alone. Actual total electricity consumption (i.e. all energy used by the home whether imported from the grid or provided by on-site generation) must be used for BPI-2400 model calibration. In the case of solar generation, this can be obtained in multiple ways. **All scenarios below assume there is no on-site battery storage.**

1. If the home has a production meter provided by the utility, and the service period dates of the production meter data match the service period dates of the net import/export meter data, then the production meter total can be summed with the net import/export meter total to produce the actual consumption for each service period.
2. Consumption data can also be obtained directly from the power inverter attached to the solar system. Generally, this can be found on a digital dashboard through a web page or a mobile app from the inverter or a monitoring system. If the power inverter is attached to the main service panel, then the consumption data from the inverter may be summed for each calendar month and used in place of electric bills. If the inverter is attached to a sub panel, then this data shall not be used.
3. If consumption data is unavailable (or the solar system is attached to a sub panel), production data must be used instead. Generally, this can be found on a digital dashboard through a web page or a mobile app from the inverter or a monitoring system. The production data must be

exported and subtotalled using the same service periods that are used by the net import/export records obtained from the utility bills. The subtotalled production data can be summed with the net import/export meter total to produce the actual consumption for each service period.

The total building electricity consumption records produced according to one of the above methods shall be the inputs for the calibration procedure. If the property owner or resident confirms that they are unable to procure electricity generation records, then the building shall be treated as though electric bills are not available, and the procedures in Annex E shall be followed.